ADA Flanger Clone Build Documentation

MN3007 version - PCB rev5 - January 2010
(updated Feb 2012)

Power supply

The power supply section of the circuit is located in the lower left corner of the PCB. Either a +9VDC wall wart or a +18 VDC wall wart is recommend. Alternatively, one or two 9V batteries may be used as a temporary solution for startup, testing or debugging. Three options for supplying power to the PCB are described below.

Option 1 - Use a 9VDC wall wart power supply

- Install all components shown in the power schematic, above.
- Apply +9VDC to the PCB from a 9VDC wall wart to the pad labeled '+9VDC', located below C38.

Option 2 - Use an 18VDC wall wart power supply

- DO NOT install IC11 and associated components (C38, C39, C40, D8, D11).
- Install D7, C31, C32 and IC7.
- Apply +18 VDC to the PCB from an 18VDC wall wart to the pad labeled '+18VDC', to the left of D7.

NOTE - Space is provided to allow for a heat sink to be installed on the 15VDC regulator, IC7 (LM7815), but the use of a heat sink is not critical and it can be omitted with little concern.

Option 3 - Use two (2) 9V batteries connected in series

- Connect the (+) from the first battery to the $(-)$ of the second battery.
- Connect the (-) from the first battery to ground.
- Connect the $(+)$ from the second battery to +9 VDC on the PCB.

NOTE - This is a good option for troubleshooting things like unwanted noise or power problems, but it is not recommend as a permanent solution.

LFO timing capacitors (C24 and C25)

- The stock ADA Rev. 3 version used two electrolytic capacitors in this location.
- Be sure to note the orientation of C24/C25 - positive leads facing each other.
- Alternatively, if you wish to alter the speed range of the LFO, or configure the LFO as in other revisions of the circuit, you may use different capacitor values and/or install only C25 and install a jumper in place of C24.

Clock timing capacitor (C29)

- C29 appears twice in the layout (to the left of IC6). Do not install the upper one that is oriented horizontally, and connects to Pad F (just leave it out).
- The additional footprint for C29 is included for builders who are interested in
experimenting with switching between alternate timing capacitors in the clock section.

Threshold potentiometer (P2)

- The schematic and the silkscreen on the PCB both indicate the original factory value of 10K for the Threshold potentiometer. But, better gating action can be obtained by replacing this with a 100 K potentiometer.

Output mixing resistors (R41, R42)

The value of the mixing resistors at the output buffer (R41, R42) has been reduced to allow higher than unity volume at the output, and a 10 K output volume pot can be added as shown in the schematic, above. If a panel mounted volume control is not desired, a 10 K trim pot can be installed in the perfboard area in the lower left corner of the PCB and connected to the circuit output with a flying lead to provide an internal level setting for the output volume.

External control input jack (JK3)

- Use a switching type jack for the manual sweep input jack (JK3). Something similar to Mouser pn 568-NYS218 should work well. The jack sleeve should be grounded, so the jack does not need to be isolated from the enclosure.

When nothing is plugged into JK3, the jack's switch will be closed and the wiper of P3 should connect to R53 through the jack's switch. When the stereo plug from a CV control pedal is plugged into JK3, the jack's switch will open and disconnect the wiper of P3, the plug's ring should connect to R53, and the plug's tip should connect to R50. The pads on the PCB are labeled as follows - Sw (switch contact), T (tip contact), S (ring contact).

Think twice before you decide to leave this feature out, because controlling the sweep of the effect with a foot pedal is really cool! But if you still do not want to install the external control jack, you do not need to install R50, but you must install a jumper between pads Sw and S for the effect to work properly.

LED and Associated Current Limiting Resistor

- These are not shown in the schematic or in the Bill of Materials.
- Pick the appropriate value resistor for your particular type of LED.
- The resistor may be installed in the perfboard area in the lower left corner of the PCB, near the power supply section of the circuit.
- Alternatively, if you want the LED to blink at the same rate as the LFO, a resistor/LED may be connected to the output of the LFO (node at lug 3 of the Range control). Additional power filtering may be required if this causes an audible pulse or ticking sound.

Methodical building process

Here is an approach to building this (or any circuit) that was outlined by Stephen Giles at diystompboxes.com.

Populate and test the different sections of the circuit as follows. Make sure each section is working as it should before moving on to the next section.

1. Power supply and Vb generator - test that the Vb generator is giving $1 / 2+\mathrm{ve}$ voltage otherwise nothing will work!
2. Input / output amps, test that all opamps have good signal at outputs.
3. LFO and manual CV generator - test for changing voltage at Range wiper.
4. Do all components from Range pot to 4049 and check that clock signals are each around 7 v .
5. Do components around MN3007. Set up bias and you should have flanging of sorts. I set up the rest by ear using the clock range and max clock trims. This route would be beneficial to a novice because it is possible to see each separate building block working on its own and makes it easy to remember where everything is in the board - good for troubleshooting. I would even draw round the various sections on the circuit board with a felt tipped pen as a guide.

ADA Flanger Clone (MN3007 version) Bill of Materials				
Description	Mouser p/n	Qty	Part Reference	Comment
0.01	140-PM2A103K	5	C1, C3, C10, C20, C23	
0.1	140-PM2A104K	4	C9, C16, C28, C37	
0.22	505-MKS20.022/63/5	1	C33	
0.47	75-MKT1818447064	1	C7	
1	581-TAP105K025SCS	1	C32	Tant
1	505-MKS21/50/10	1	C21	Film
2	140-L35V2.2-RC	1	C38	
2.2	140-L35V2.2-RC	2	C6, C17	
4.7	140-MLRL50V4.7-RC	5	C2, C5, C15, C27, C35	
10	140-L35V10-RC	1	C39	
22	140-ESRL50V22-RC	2	C4, C36	
33	140-ESRL50V33-RC	4	C22, C24, C25, C26	
100	140-L25V100-RC	1	C40	
470	140-XRL25V470-RC	1	C31	
100p	140-500P5-101K-RC	2	C8, C14	
1500p	140-PEI2A152J-RC	,	C18	
39p	140-50N2-390J-RC	1	C29	
510p	140-500P5-501K-RC	1	C19	
47	271-47-RC	4	R6, R55, R62, R68	
100	271-100-RC	3	R27, R45, R50	
250	271-249-RC	1	R72	
100k	271-100K-RC	6	R30, R31, R46, R48, R52, R58	
10k	271-10K-RC	5	R13, R34, R36, R37, R67	
150k	271-150K-RC	1	R65	
14k	271-14K-RC	1	R71	
1k	271-1K-RC	4	R1, R14, R60, R70	
1M	271-1.0M-RC	3	R5, R35, R54	
1M3	291-1.3M-RC	1	R28	
20k	271-20K-RC	3	R9, R63, R64	
22k	271-22K-RC	5	R32, R33, R39, R51, R73	
27k	271-27K-RC	4	R10, R41, R42, R43	
2k7	271-2.7K-RC	3	R3, R47, R61	
2M2	271-2.2M-RC	1	R69	
30k	271-30K-RC	3	R2, R4, R38	
43k	271-43K-RC	1	R26	
47k	271-47K-RC	1	R11	
510k	291-510K-RC	1	R53	
51k	271-51K-RC	2	R49, R66	
5k1	271-5.1K-RC	1	R44	
68k	271-68K-RC	6	R7, R8, R12, R29, R40, R56	
75k	271-75K-RC	1	R59	
82k	271-82K-RC	1	R57	
1N914	512-1N914	6	D1, D2, D3, D4, D5, D6	
1N4001	512-1N4001	1	D7	
1N5817	512-1N5817	2	D8, D11	
10kb Pot	313-1000F-10K	2	P1, P3	Enhance, Manual
100kb Pot	313-1000F-100K	1	P2	Threshold
50 kb Pot	313-1000F-50K	1	P4	Range
500kc Pot	smallbear	1	P5	Speed (rev log taper)
10ka Pot	313-1500-10K	1	P6	Volume
20k Trim	858-72PMR-20K-LF	4	T1, T2, T3, T4	Bias, Enhance, Auto Sweep, Max Clock

moosapotamus.net

100k Trim	858-72PMR-100K-LF	2	T5, T6	Clock Range, Delay Bal
LM324 / TL074	$595-T L 074$ IN	3	IC1, IC2, IC3	
MC1458 / TL072	$595-$-TL072CP	1	IC4	
CD4007	$595-C D 4007$ UBE	1	IC5	
CD4047	$595-C D 4047 B E$	1	IC6	
LM7815	$511-$ L7815CV	1	IC7	
CD4049	$595-C D 4049 U B E$	1	IC9	BBD
MN3007	outsource	1	IC10	
LT1054	$595-$ LT1054CP	1	IC11	N channel JFET
LS4393 / 2N4393	$512-P N 4393$	1	Q1	Odereo w/ ring switch
stereo switching	$568-N Y S 218$	1	JK3	Odd/Even Toggle switch
SPDT toggle	108-1MS1T2B3M1QE- EVX	1	SW1	optional
TO-220 heatsink	$567-274-2 A B$	1		

ADA Flanger Clone (MN3007 version) Bill of Materials							
part	value	part	value	part	value	part	value
C1	0.01	C39	10	T4 Max Clock	20k Trim	R42	27k
C2	4.7	C40	100	T5 Clock Range	100k Trim	R43	27k
C3	0.01	D1	1N914	T6 Delay Bal	100k Trim	R44	5k1
C4	22	D2	1N914	R1	1k	R45	100
C5	4.7	D3	1N914	R2	30k	R46	100k
C6	2.2	D4	1N914	R3	2k7	R47	2k7
C7	0.47	D5	1N914	R4	30k	R48	100k
C8	100p	D6	1N914	R5	1M	R49	51k
C9	0.1	D7	1N4001	R6	47	R50	100
C10	0.01	D8	1N5817	R7	68k	R51	22k
C14	100p	D11	1N5817	R8	68k	R52	100k
C15	4.7	IC1	LM324 / TL074	R9	20k	R53	510k
C16	0.1	IC2	LM324 / TL074	R10	27k	R54	1M
C17	2.2	IC3	LM324 / TL074	R11	47k	R55	47
C18	1500p	IC4	MC1458 / TL072	R12	68k	R56	68k
C19	510p	IC5	CD4007	R13	10k	R57	82k
C20	0.01	IC6	CD4047	R14	1k	R58	100k
C21	1	IC7	LM7815	R26	43k	R59	75k
C22	33	IC9	CD4049	R27	100	R60	1k
C23	0.01	IC10	MN3007	R28	1M3	R61	2k7
C24	33	IC11	LT1054	R29	68k	R62	47
C25	33	JK3	stereo w/ ring switch	R30	100k	R63	20k
C26	33	P1	10k Enhance	R31	100k	R64	20k
C27	4.7	P2	100k Threshold	R32	22k	R65	150k
C28	0.1	P3	10k Manual	R33	22k	R66	51k
C29	39p	P4	50k Range	R34	10k	R67	10k
C31	470	P5	500k Speed	R35	1M	R68	47
C32	1	P6	10K Volume	R36	10k	R69	2M2
C33	0.22	Q1	LS4393 / 2N4393	R37	10k	R70	1k
C35	4u7	SW1	SPDT toggle	R38	30k	R71	14k
C36	22-33u	T1 Bias	20k Trim	R39	22k	R72	250
C37	0.1	T2 Enhance	20K Trim	R40	68k	R73	22k
C38	2	T3 Auto Sweep	20k Trim	R41	27k		

Flanger Calibration and Bench Test Procedure

1. Power Supoly
(A) Check supply voltage at:
(Rev. 1 and 2) I.C. -5 pin $10 \quad+14.5 \mathrm{~V}+/-4 \%$
(Rev. 3 and 4) I.C. - ? pin 3

$$
\begin{gathered}
1 \\
+14.5 \mathrm{~V}+/-4 \% \\
+15 \mathrm{~V}+/-4 \%
\end{gathered}
$$

2. Clock_Erequency
(A) With frequency counter check clock frequency at pin 13 of I. $\mathrm{S}_{1}-$? (Rev. 1 , and 2) or pin 13 of I.C. -6 (Rev. 3 and 4).习ith Wanual CCW adjust range trim T-1 (Rev.l and 2) or T-5 (Rev. 3 and 4) for 34.8 KHz .
(3) With Fanual Cil adjust Bias T-2 (Rev. 1 and 2) or T-4 (Rev. 3 and 4) for 1.3 HK -Recheck and adjust as necessary for interaction between trims.
(c) Sheck sweep range, turn Range CW , range should sweep from 34.8 KHz to 1.3 MHz , adjust $\mathrm{T}-3$ (Rev.2, 3 and 4 only) Cif to sweep higher.

3. BBD Bias

(A) Inject 1Kify signal 2 y p-p at input jack, probe 1458 I
pin $?$ (Rev. 1 and z) or I.C. 2 pin 8 (Rev. 3 and 4), turning Manual end to end pbserve signal, if not symetrical adjuat T-5 and T-6 (Rev. 1 and 2) or T-1 (Rev. 3 and 4) for maximum symetry. Note - clock noise wili be present at low end of clock.
4. Reseneration (Enhance) and Noise Gate (Threshold)
(A) Inject 1 KHz signal, probe output jack, adjust all settings Cif, adjust T-4 (Rev1 and 2) or T-2 (Rev. 3 and 4) into self oscillation, remove signal adjust trim until signal gradually attenuates.
(3) Inject 1 Kizz signal 25 mi $p-\mathrm{p}$ or less, sot all adjustments O", probe output jack, using maximum sensitivity on scope turn Thresisold cow sigeal should attenuate to $10 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or less....

Tote :- For Sev. identification see Flanger Pevision Identification

NOTE - Because this version of the circuit uses a MN3007 instead of a SAD1024, the clock frequencies stated in step 2, above, should be doubled to 69.6 KHz to 2.6 MHz (not 34.8 KHz to 1.3 MHz).

Additional Notes on Calibration

- A frequency counter is needed to set the min and max frequency of the clock circuit. If you do not have an oscilloscope available, many digital multi meters (DMM) also have a frequency counter function. The circuit can also be calibrated by ear with some trial-and-error. When calibrating, it is very helpful to input some sort of constant sound source that is rich in harmonics and listen to the output. A synth, sampler, theremin or something similar fed through some type of fuzz or distortion effect, for example, should work well.
- Follow the factory calibration instructions, above, referring to (Rev. 3 and 4), but double the values for the clock frequency settings. The factory procedure was not written with reference to this new MN3007 based version of the circuit. So, take frequency readings at the test point (TP), and instead of setting the range to go from 34.8 KHz to 1.3 MHz , set the range to go from 69.6 KHz to 2.6 MHz .
- Also, adjust TR6 to balance the delay signal and the dry signal so that they are approximately equal. A 50/50 wet/dry mix is ideal and can be set by using an oscilloscope, or approximated by ear.

Here are some additional notes on calibrating the circuit that were taken from "the big TZF thread" at diystompboxes, here http://www.diystompboxes.com/smfforum/index.php?topic=49929.640

BTW, there is a lot of good info in that discussion; the majority of it is with reference to the old SAD1024 version of the circuit, but pretty much everything applies equally to this newer MN3007 version.

Here's what I posted at diystompboxes.com about the calibration procedure for the SAD1024 version. If building the MN3007 version, adjust the clock frequencies as noted above...

- I used the frequency counter on my DMM, positive lead on the test point (TP) and common lead to ground. But, I think you could definately do this by ear, too.
- Threshold 100\%, Manual 0\%, Range 100\%, Speed 50\%, Enhance 50\%, all trimmers at 50\%.
- Plug in a noise maker, theremin, looper/sampler, keyboard, whatever... Something that makes a continuous sound, as opposed to having to keep strumming your guitar, for example. If you use a theremin or keyboard or something that doesn't have a lot of harmonics, try putting it through some kind of fuzz/dist/od pedal so you'll be able to hear the sweep more prominently.
- Adjust T1 bias until you hear the effect sweeping. Then turn Range to 0\%. You should now be able to sweep the effect manually by twisting the Manual knob.
- Now, set the low and high points of the sweep, keeping Range at $0 \% .$.
- With Manual at 0\%, adjust T4 to set the low point, $\sim 35 \mathrm{kHz}$. Turn Manual up to 100% and adjust T5 to set the high point of the sweep, $\sim 1.3 \mathrm{MHz}$. T4 and T5 interact with each other, so you need to go back and forth (set Manual 0\% adj T4, set Manual 100% adj T5, repeat) until you get the low and high sweep points set where you want.
- I left T3 set at 50%. It does seem to alter the range, but I couldn't hear it doing much of anything else.
- I also left T6 at 50\%. I'm not hearing any appreciable bad noise. It quiets down
very nicely when not playing.
- I'm still deciding where I want to leave T2... to self-oscillate or not to selfoscillate... that is the question.

Here's what TR in NC posted about the calibration procedure...

- Of course verify power (all IC's etc.).
- Clock frequency adjustment. I don't want to spell out the bench test procedure so here's my easy calibration. Measure frequency with a scope at IC6 (CD4047) Pin 10 (pin 11 will also work). Adjust Threshold, Manual, Range, Speed and Enhance pots fully CCW. Adjust T5 fully CW, Adjust Manual pot fully CW, Adjust T4 to 1.3 MHz . Adjust Manual pot fully CCW and verify min frequency (mine was around 21.7 KHz). Bench spec states min 34.8 KHz , max 1.3 MHz (I could not adjust T4 and T5 to get both setpoints). You can adjust the low end up but this also raises the high end of the sweep range. I chose to keep the low end at 21.7 KHz (you can compromise in either direction).
- BBD Bias and Regeneration. This is where I didn't have any luck with the bench test procedure. When I thought I had everything setup I hooked it to my amp and nothing. So here's my easy setup procedure. With the output connected to your amp (keep amp volume VERY low), Adjust Threshold, Manual, Range, Speed and Enhance pots fully CW. Set T1 fully CW and T2 fully CCW. Adjust T1 CCW just until you hear the full sweep next; adjust T2 until the sweep is almost fully attenuated. Adjusting the Enhance pot will fully attenuate the sweep. If you don't want to hear the sweep at all with the Enhance pot fully CW then just adjust T2 until the sweep is fully attenuated (I chose to hear the sweep so I know where the attenuation threshold is when setting the Enhance pot).
- I kept both T3 and T6 at 50\%, didn't really see much change with either of them.

And, some additional thoughts from bajaman can be found at diystompboxes, here...

- http://www.diystompboxes.com/smfforum/index.php?topic=74367.msg607565\#msg607565

DISCLAIMER

The information contained in this document is intended for personal use only. No permission is granted for commercial use of this document, or the information it provides, in any way whatsoever. In addition, no guarantee of success (however you define 'success') is either granted or implied. Anyone attempting to build a working version of what is described in this document does so of their own accord and also understands that a certain level of knowledge in the theory, application, construction and fabrication of electronic circuits is required to do so successfully. Further help and support can be found in the discussion forums at diystompboxes.com/smfforum.

Be safe and have fun!

